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Abstract 

The multisolution strategies for direct phasing at very 
low resolution, such as the few atoms model technique, 
result in a number of alternative phase sets, each of them 
arising from a cluster of closely related models. Use of a 
Monte-Carlo type computer procedure is suggested to 
choose between the possible phase sets. It consists of 
generating a large number of pseudo-atom models 
inside the mask defined by a trial phase set and the use 
of histograms of magnitude correlation to evaluate the 
masks. It is shown that the procedure may be considered 
as a generalization of the statistical maximum-likelihood 
principle and may be used as a powerful supplementary 
tool in the likelihood-based approaches to the phase 
problem solution. 

1. Introduction 

The problem of ab initio phasing for macromolecules 
and their complexes is in the focus of attention for the 
last decade. By ab initio phasing we mean in this paper 
the attempts to solve macromolecular structures based 
on X-ray (or neutron) native diffraction data only, 
without isomorphous derivatives or anomalous scat- 
tering data. It is now possible to separate two main 
directions to attack this problem. The first one is to use 
from the very beginning a close-to-atomic-resolution set 
of structure factors and develop classical direct methods 
(Wooifson & Yao, 1990; Sheldrick et al., 1993; Weeks et 
aL, 1994). The other way is to start from very low 
resolution and use some features of macromolecular 
objects to solve the low-resolution phase problem, 
followed by density modification and refinement 
methods to improve resolution (Podjarny et al., 1987; 
Lunin et al., 1990, 1995; Bricogne & Gilmore, 1990). We 
are concerned in this paper with the problem of very low 
resolution phasing only. 

We have developed earlier some methods of ab initio 
low-resolution phasing (Lunin et al., 1990, 1995) and 
showed that they allow reduction of the phase problem 
to a small number of alternative solutions. We recall this 
method briefly in §3. Some additional criteria were 
suggested to reduce this number (Urzhumtsev et al., 

1996) for special cases. In §4 we propose a general way to 
rank these possible solutions and to refine and extend 
phases. We start from an empirical procedure and 
present results of tests in §5. In §6 we highlight the 
connections between this empirical procedure and a 
maximum-likelihood based choice of the prior, 
proposed by Bricogne & Gilmore (1990). We discuss in 
§7 the advantages and disadvantages of both approa- 
ches. 

2. Definitions 

We define in this section some general concepts which 
will be used afterwards without additional explanation. 

2.1. Control criterion: phase correlation 

When testing phasing methods, we call a control 
criterion some measure of the quality of the current 
phase set {~0h}. In this paper we use mostly one type of 
control criteria based on the comparison of current 
phases with the true ones {qg{,x}, namely the phase 
correlation coefficient (Carbo et al., 1980; Read & 
Moult, 1992; Lunin & Woolfson, 1993), 

p c ( { ~ h } ,  {~x})  = Z(FI~)2  c o s ( ~ x  __ ~ h ) / Z ( F I ~ ' )  2, (1) 
h h 

where {b-~,} are experimental magnitudes. This value can 
be calculated only in test cases, when the true phases are 
known. It must be noted that the experimental magni- 
tudes themselves do not fix the origin and enantiomorph 
unambiguously. So in ab initio phasing we must either 
specify some phases fixing origin/enantiomorph or 
produce the phase alignment (Lunin & Lunina, 1996) 
before calculating (1). It is supposed further that such an 
alignment is always performed before the phase 
comparison. 

The phase correlation coefficient is not the only way 
to compare current phases with the true ones. For 
example, the mean absolute phase error or some 
weighted mean phase error may be used for the same 
purposes. We will therefore call 'phase correlation' any 
control criterion based on the comparison of trial and 
exact phase values. An example of a control criterion 
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which is not a phase correlation is the model trapping 
value, defined as the number of atoms of the true 
(refined) model inside the mask region, which is calcu- 
lated using the trial phases and the observed magnitudes 
(Lunin & Lunina, 1998). 

2.2. Selection criterion: magnitude correlation 

We call a selection criterion an estimate of a trial 
phase set quality which can be calculated either on the 
basis of the experimental magnitudes only or with the 
use of some prior information. This prior information is 
of a general type, e.g. electron-density histograms 
(Lunin et al., 1990), connectivity (Wilson & Agard, 1993; 
Baker et al., 1993; Bystroff et al., 1993), atomicity 
(Woolfson & Yao, 1990; Weeks et al., 1994), etc., and 
does not require the knowledge of the true phases. It 
must be possible to calculate this criterion value for 
every trial phase set in a real ab initio phasing process; 
the appropriate choice of the criterion is the key point 
for the success of the method. It should be noted that so 
far no criterion has been found to choose the correct 
solution unambiguously. 

This paper will consider a particular case when the 
trial phases are calculated from trial atomic models. In 
this case model magnitudes may be used to define a 
selection criterion, e.g. as 

MC({Uhl, {F~,'})= 

y~(F~, - ( U ) ) ( F ~ ,  - (F°) ) /  
h 

1 (F~,-  (FC))2~_~(F~, - (F°)) 2 , 
h 

(2) 

or, as 

MC(IF I, IF I) = Z 2 2 (3) 

We will call magnitude correlation (MC) any type of 
selection criterion based on the comparison of calcu- 
lated and observed magnitudes. Obviously, other types 
of magnitude correlation, besides (2) or (3) are possible, 
e.g. the usual R factor. An example of a selection 
criterion which is not a magnitude correlation is the 
closeness of the standard electron-density histogram to 
the one corresponding to the Fourier synthesis calcu- 
lated with the use of trial phases and the observed 
magnitudes (Lunin, 1993). 

We will say that structure factors calculated from a 
trial atomic model are w-correlated if the corresponding 
magnitude correlation value, MC, is higher then some 
prescribed level m. We will call the structure factors well 
magnitude correlated (WMC) if they are w-correlated 
with a high enough value of co, to be defined in each 
particular case. 

2.3. Cluster centroid phases 

For a collection (cluster) of phase sets {~0~,}, j = 1 ..... M 
we define the centroid phases ~pbest and the figures of 
merit mh as 

1 M 
m h exp[i~p best] = ~ ~ exp[i~0~,]. (4) 

It is supposed that the best alignment of all the phase 
sets to a reference set was performed before averaging 
in (4). 

2.4. Few atoms model  (FA M) 

We call a few atoms model a model composed of a 
relatively small number of equal pseudo-atoms. These 
atoms are modeled either with a Gaussian shape, 

/'4rr~ 3/2 /" 47r2 r2"~ 
p(r) = ~-f f )  e x p ~ - - - - - ~ ) ,  (5) 

(usually with an artificially large B value) or with a 
constant non-zero density inside a sphere of given 
radius. We will refer further to the number of atoms in 
an asymmetric unit as the number atoms in an FAM, 
supposing that all the symmetry-related atoms are 
included in the model. The simplest example of an FAM 
is the single-huge-atom model which contains one 
pseudo-atom in the asymmetric unit. 

2.5. Test object 

We use in the tests described below the same AspRS- 
tRNA Asp complex data described in a previous paper 
(Lunin et al., 1995). The cubic crystal form of AspRS-  
tRNA A~p complex is particularly well suited for low- 
resolution work, because of the large unit cell (space 
group I432, a = 354 ,~), the large solvent content (78%), 
and the compact shape of the complex. The structure 
was solved by the molecular-replacement method 
(Urzhumtsev et al., 1994) using X-ray data to 8 ,~ reso- 
lution and a model from another crystal form (P21212) 
solved at 2.9,& resolution (Ruff et al., 1991). The 
neutron diffraction low-resolution (oo-20,~) data set 
(Moras et al., 1983) was used in tests described below as 
the experimental magnitudes. These magnitudes can be 
fitted correctly (MC = 0.92) with the molecular-repla- 
cement model. Molecular-replacement model phases 
were considered in the tests as the exact ones. All the 
tests were performed at 40 ,~ resolution (49 reflections). 

3. The outlines of FAM approach 

3.1. Specific features o f  low-resolution phasing 

Two major ideas were originally proposed to find very 
low resolution (VLR) phases (or molecular region 
masks) which lead sometimes to unpredictable results. 
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Table 1. The result o f  reciprocal-space refinement o f  
randomly generated lO0-atoms models against experi- 

mental data at 40 A resolution (49 reflections) 

Magnitude (MC) and phase (PC) correlations are defined according to 
(2) and (1). respectively. 

Variant 
Before refinement After refinement 

MC PC MC PC 

0.50 0.53 1.00 0.54 
0.50 -0.48 0.99 -0.44 
0.17 0.04 1.00 0.06 
0.64 0.24 0.98 0.24 
0.54 -0.20 1.00 -0.22 
0.40 -0.04 1.00 -0.05 

The first one consists of modeling the molecule at VLR 
as a sphere ('flat' or 'Gaussian') and obtain the VLR 
phases from such a single-huge-atom (SHA) model 
(Podjarny et al., 1987: Harris, 1995; Andersson & 
Hovm611er, 1996). The molecular volume can usually be 
estimated, defining the sphere radius [or B value for a 
Gaussian sphere (5)], and the only problem is to find the 
position of its centre. To do this we can scan the unit cell 
and compare for every position the values of magnitudes 
calculated from SHA-approximation with the observed 
ones. The best agreement of the two sets of magnitudes 
will give us the optimal position for the sphere center. 

The first part of this proposition is reasonable, i.e. low- 
resolution phases can usually be approximated by SHA 
ones (Podjarny et al., 1987: Andersson & Hovm611er, 
1996), but the best agreement of magnitudes may be 
obtained for sphere centres quite different from the 
ones producing good SHA phases. Fig. 1. displays a 
distribution of sphere centers with respect to two 
criteria, namely the correlation of SHA-calculated and 
observed magnitudes (2) and phase correlation coeffi- 
cient (1). It shows that for our test case the sphere 
positions resulting in good magnitudes usually give quite 
bad phases. Similar pictures were obtained for other 
objects. Special efforts are necessary in such a search 
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Fig. 1. Plot of phase correlation equation (1) v e r s u s  magnitude 
correlation (2) for the calculated structure factors of 1000 randomly 
generated models. Each point represents a single one-atom model. 

(Podjarny et al., 1987) to avoid false solutions, e.g. 
identify these false solutions as being placed in special 
positions in the unit cell. 

The other idea (Subbiah, 1991, 1993) is to take a large 
number of randomly placed atoms and refine their 
positions against experimental magnitudes. The refined 
set of atoms is expected to produce good low-resolution 
phases. Fig. 2. shows magnitude and phase-correlation 
values for 100 FAM's consisting of 100 random atoms 
each. Attempts to refine such models lead to equally 
well correlated magnitudes, but do not produce any 
phase improvement (Table 1). 

These examples illustrate the two main features of 
low-resolution phasing, which can be obtained when 
using other selection criteria also (Lunin et al., 1990, 
1995). 

The best values of the selection criterion may be 
coupled with bad control criterion values and vice versa. 

Local refinement may significantly improve selection 
criterion values without any improvement of phases. 

3.2. Redefinition o f  the problem o f  low-resolution 
phasing 

These two pessimistic inferences may be partially 
compensated by the observation (Lunin et al., 1990, 
1995) that the phase sets (variants) corresponding to 
good selection criterion values do not fill a 'configura- 
tion space' randomly, but form a small number of 
compact regions in configuration space, one of which is 
close enough to the true solution. This may be inter- 
preted as stating that the true solution corresponds to 
one selection criterion optimum, but not necessarily to 
the best one. Therefore, we redefine the problem of low- 
resolution phasing as the task of studying and describing 
all the main regions in multi-dimensional configuration 
space corresponding to good selection criterion values. 
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Fig. 2. Plot of phase correlation (1) v e r s u s  magnitude correlation (2) 
for the calculated structure factors of 100 randomly generated 
models. Each point represents a single 100 atoms model. The arrows 
show the result of the reciprocal-space refinement of some models 
(Table 1 ). 
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The multidimensional cluster analysis technique was 
found to be a useful tool for such an analysis. 

3.3. The .Jew atom,; models  approach 

Even for low resolution the high number of dimen- 
sions of the phase sets configuration space is too large to 
perform an exhaustive search. To overcome this diffi- 
culty a Monte-Carlo type procedure was suggested to 
study the configuration space (Lunin et al., 1990). The 
few atoms model (FAM) method allows a further 
reduction in the dimensionality (Lunin et al., 1995). In 
this approach we sample the configuration space by 
considering only the phase sets corresponding to 
pseudo-atomic models, composed of a relatively small 
number (usually less than ten) of artificially large atoms. 
A single FAM experiment consists in the random 
generation of a large number of FAM's and the selection 
of the phase sets (which are called variants) corre- 
sponding to well magnitude correlated FAM's. This 
stage is formally similar to the multi-peak search 
incorporated into the A M o R e  package (Navaza, 1994), 
but differs in having a larger number of selected phase 
sets. During the second stage the distribution of the 
selected variants in the multidimensional contiguration 
space is investigated, and the variants are grouped in a 
small number of clusters, each consisting of closely 
related phase sets. The centroid phases (4) calculated for 
every cluster give a small number of alternative solu- 
tions to the phase problem. 

4. Clusters selection and refinement procedures 

The FAM approach to an ab initio solution of the phase 
problem results usually in a number of clusters with no 
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Fig. 3. Clus te r  t ree  for the phase  sets ca lcu la ted  from the best  
magn i tude  co r r e l a t ed  two-a toms  models.  Every  node  co r r e sponds  
to merging two clusters into a larger one. The cluster-cluster 
distance is calculated as the average value of the variant-variant 
distance (7). 

obvious preference of one with respect to the others. 
Different additional considerations may be used in the 
selection procedure; e.g., the corresponding electron- 
density distributions may be calculated and visually 
analyzed for every cluster (Urzhumtsev et al., 1996). We 
present here a procedure of cluster comparison, which 
has a common basis with the maximum-likelihood-based 
choice of prior distributions (Bricogne & Gilmore, 
1990), but is more straightforward and simpler in 
computer implementations. A comparison of these 
approaches is made in §7. Another feature of the 
suggested procedure is the possibility of refining and 
extending cluster phase sets. This part of the procedure 
has a common basis with the use of conditional prob- 
ability distributions and is discussed in §6 below. 

4.1. Mask test 

To obtain the mask of the molecular region for a 
cluster of phase sets, a Fourier synthesis is calculated 
with the cluster centroid phases (4) and the observed 
magnitudes, and the points with highest density values 
arc selected. The cut-off density level is defined so that 
the mask has a volume close to or slightly larger than the 
one of the molecular region. A series of FAM models, 
restrained to be in the mask region, is then generated a 
larger number of atoms (usually around 100). The 
histogram (or the corresponding cumulative function) 
for magnitude correlation values is then calculated. 

The main idea of cluster comparison is that in general 
the number of WMC variants will be more when 
generating FAM's into the true molecular region, than 
into some arbitrary one. The plots of cumulative func- 
tions may be used to give qualitative estimates for the 
correctness of the different clusters (see §5 below). 
Special care has to be taken when masks lie on top of 
symmetry axes. To have a numerical estimate of the 
mask quality we can calculate the frequency for the 
selection criterion MC to be higher than the prescribed 
level w 

Rnlask z 

{the number of FAM's  with MC({F~}, {U~}) >_ w} 

{the total number of generations} 

(6) 

The cut-off level w may be chosen on the basis of the 
histogram corresponding to FAM generation in the 
whole unit cell, e.g. as the 'mean plus r.m.s.d' value of 
MC. The purpose of the test is to choose the right 
cluster: however, there might be more than one 'good" 
cluster (see §5). 

4.2. Mask  ref inement  

After the best mask regions are chosen as outlined in 
the mask test section, we can attempt phase refinement 
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and extension by repeating the envelope based FAM- 
generating procedure as follows. 

(a) Generating FAM's inside molecular region only. 
(b) Selecting w-correlated variants. 
(c) Calculating the mask average phases as the 

centroid phases for the chosen set of variants. 
These new phases allow the calculation of a new mask 

region; the iteration of this procedure may be consid- 
ered as cluster refinement, during which the resolution 
can be gradually increased. 

value for the magnitude correlation). The corresponding 
phase sets were selected for a further analysis. Fig. 3 
illustrates the distribution of the selected phase sets 
(variants) in the configuration space. This tree shows the 
order in which the clusters are merged together, on the 
basis of the variant-variant distance defined as 

dist({~ol}, {~o2}) = 

-] 1/2 

z ]F~ exp(i~o],)- F~ exp(i~o2h),2/)-~(F~)2| (7) 
h _] 

5. Test results 

The procedure described above has been applied to the 
neutron data of the tRNAASp-Asp RS complex (§2.5). 
Firstly, 1000 two-atoms FAM's (B = 12 000 ~2) were 
generated into the whole unit cell and about 100 of them 
revealed magnitude correlations, equation (3), better 
then 0.8 (which is approximately the 'one plus sigma' 

# variants 

[ --o- vl 0.02 I -m-v2 0.64 
- ~ -  v3 -0.27 

-e- v4 -0.05 I 

MC 

and the cluster-cluster distance defined as the average 
value of the variant-variant distance for all the pairs of 
different clusters members. The best phase alignment 
must be performed before calculating (7). 

Secondly, the four top clusters were chosen for the 
mask test. They are marked as v l -v4 in Fig. 3. For each 
of them, a weighted Fourier syntheses was calculated 
with the cluster centroid phases and the observed 
magnitudes. The masks were then built by selecting the 
highest density values occupying 30% of the unit-cell 
volume, and they were tested by 100 generations of 100- 

o 

atoms (B = 3000 A) FAM's inside them. The distribu- 
tions of the magnitude correlation values (3) are shown 
at Fig. 4, the largest number of WMC variants is 
obtained for the best mask and the smallest number for 
the worst mask. The two other clusters, with a PC value 
close to zero, have an intermediate distribution of MC 
values. Fig. 5 illustrates an attempt to use the same test 
to split the best cluster v2 into two smaller ones. Here we 
do not see such a clear picture as that of Fig. 4, and 
furthermore the distribution for the worse cluster v2b 

0_ _ - - -  & - 0.-9 - seems better than the one for the best cluster v2a. 
Therefore, the mask is sensitive when analyzing variants 

of the Fig. 4. The distribution magnitude correlation (3) for structure 
factors calculated from 100-atoms models generated into masks with very different quality, but may be misleading when 
corresponding to different cluster nodes of the tree presented in Fig. 
3. The values in the legend are the phase correlation (1) calculated cluster-cluster distance 
for cluster centroid phases. 1.1 r ~ w 3  /~w4 

,or --.>w2 , \ 1 # 1  
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Fig. 5. The distribution of the magnitude correlation (3) for structure Fig. 6. Cluster tree for the 9hase sets calculated from the best 
factors calculated from 100-atoms models generated into masks magnitude correlated five-atoms models generated into the mask v2. 
corresponding to different cluster nodes of the tree presented in Fig. Every node corresponds to merging two clusters into a larger one. 
3. The values in the legend are the phase correlation (1) calculated The cluster-cluster distance is calculated as the average value of the 
for cluster centroid phases, variant-variant distance (7). 
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applied to clusters of close quality composed of a small 
number  of phase sets each. 

The mask corresponding to the cluster v2 was used at 
the next step to generate 1000 FAM models of five 
atoms each, restricting their positions to be in the mask 
region only. The five clusters chosen for the mask tests 
are marked in Fig. 6, and Fig. 7 shows the test results. 
Again, the best cluster has the best histogram, but the 
other  clusters cannot  be ranged unambiguously on the 
basis of these tests. 

In the final stage the mask corresponding to the best 
cluster was used to generate 1000 FAM models of 100 
atoms each, and the centroid phases for the 100 best 
WMC variants were calculated. Fig. 8 shows the sections 
of corresponding Fourier synthesis together  with the Ca 
atoms of the synthetase dimer and the P atoms of the 
two tRNA's. 

6. Theoretical analysis 

Now we consider the FAM approach from a different 
point of view. We begin with the cluster discrimination 
procedure and finish with the mask refinement one. 

6.1. Generalized likelihood 

Let us now convert  the mask region into an a priori 
probabil i ty distribution, which has a constant  value 
inside the mask region and is equal to zero outside it. 
Supposing that the atomic coordinates are randomly 
distributed in accordance with this prior, we can define 
the l ikelihood of the prior as the probabil i ty (or, more 
precisely, as the value of the probabil i ty density func- 
tion) of getting a set of structure-factor magnitude 
values equal to the experimental  ones. The theoretical  
calculation of this probabil i ty is difficult and different 
approximations are necessary (Bricogne, 1984; Bricogne 
& Gilmore, 1990). We can significantly simplify the task 

# v a r i a n t s  50 
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Fig. 7. The distribution of the magnitude correlation (3) for structure 
factors calculated from 100-atoms models generated into masks 
corresponding to different cluster nodes of the tree presented in Fig. 
3. The values in the legend are the phase correlation (1) calculated 
for cluster centroid phases 

if we define the generalized l ikelihood 'as the prob- 
ability of getting a set of structure-factor magnitude 
values which are approximately equal to the experi- 
mental  ones, 

GL,, = P[MC({Fh}, {F~,}) > w]. (8) 

This definition depends on the chosen cut-off level oJ 
and coincides with the usual l ikel ihood value for 0~ = 1. 
The last formula allows the calculation of an approx- 
imate value of GL by a Monte-Car lo  type simulation as, 

GL,~ 

{the number  of FAM's  with MC({Fh}, {F~'}) > w} 

{the total number  of generations} 

(9) 

This last value is just a numerical  estimate of the cluster 
quality (6) suggested above. Therefore,  our procedure of 
cluster discrimination may be considered as a general- 
ization of the maximum-l ikel ihood principle (Cox & 
Hinkley, 1974). The higher the value of co, the closer is 
GL,, to the ordinary l ikel ihood value, but more 
generat ions must be carried out in the Monte-Car lo  
simulation to get a reliable result. Ano the r  considera- 
tion preventing us from using too high an o~ value is that 
our mask-prior hypothesis may be too crude to expect 
precise magnitude values. Therefore,  the approximate 
l ikelihood estimate (9) may be more robust in cluster 
discrimination. 

6.2. Cluster average and conditional distribution for 
phases 

It is usual practice to use condit ional  distributions 
P(~oJF = F °) to estimate phase values. Following the 
considerat ions outl ined above, we can generalize this 
definition as, 

pgen(~0) = P[cpJMC({Fh}, {F~,}) > m] (10) 

and use a Monte-Car lo  simulation procedure to calcu- 
late these distributions empirically, separating the o)- 
correlated variants. The FAM experiments  have 
revealed that  such distributions are generally multi- 
modal. The division into clusters may be considered 
further as an a t tempt  to isolate regions of a particular 
mode in a mult imodal  distribution. 

To be more precise, we consider a more general 
situation. The usual approach is to consider the prob- 
ability for the phase ~Ph provided that the particular 
magnitude F h is known. The FAM generat ion and the 
separat ion of the variants with an MC value of 1.0 allows 
us (at least, theoretically) to estimate the multi- 
dimensional  condit ional  distribution for all the phases 
provided that all the magnitudes have taken the 
observed values. To calculate empirically an analog of a 
mult idimensional  histogram for the variants with an MC 
value of 1.0 we must have an enormously large number  
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of genera t ions .  To r e d u c e  this n u m b e r  to a t r ac tab le  one ,  
we ca lcu la te  empi r ica l ly  the  d i s t r ibu t ion  for  eve ry  
pa r t i cu la r  phase  ~0 u p r o v i d e d  tha t  all the  m a g n i t u d e s  are  

close e n o u g h  to the e x p e r i m e n t a l  values,  which  is a 
m u l t i m o d a l  one.  To r e d u c e  m u l t i m o d a l i t y  we sepa ra t e  
var ian ts  in to  c lus ters  and  ca lcu la te  res t r ic ted  dis t r ibu-  

m 

m 

z=O/20 z=l /20  

m 

z=2/20 z=3/20 

z--4/20 z=5/20 

Fig. 8. The sections of the asym- 
metric part of the unit cell 
representing the Fourier map 
calculated with the best cluster 
phases. C,~ atoms of the synthe- 
tase molecule and P-atoms of the 
tRNA molecule are marked. 
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tions corresponding to these clusters. The synthesis 
calculated with the centroid phases of these distributions 
corresponds to the cluster average. It must be noted that 
this restricted distributions may be again multimodal 
ones. An attempt to take the ones that are almost 
unimodal is close to the attempt to find reliable phases 
on the basis of Student's test (Bricogne & Gilmore, 
199o). 

7. Discuss ion  

The problem of calculating the joint probability distri- 
bution (j.p.d.) for a set of structure factors, provided the 
atomic coordinates are distributed randomly, is one of 
the basic problems of mathematical crystallography. 
This problem has been the focus of attention for about 
half of century (Wilson, 1949; Karle & Hauptman, 1953; 
Woolfson, 1954; Bertaut, 1955; Klug, 1958; Bricognc, 
1984) and numerous attempts were made to lind a 
practical way to calculate the j.p.d. The main results 
were obtained at the cost of additional simplifications, 
the main ones being. 

(a) All the atomic positions are supposed to be 
independent random variables, making it extremely 
difficult to take into account some stereochemical 
restrictions. 

(b) The resulting formulas usually give the main term 
of an asymptotic expansion and it is difficult to estimate 
properly the effect of the other terms. 

(c) The Gaussian approximation (the central limit 
theorem of the theory of probabilities) is used: it works 
properly for small deviations from the mean and less so 
for the large ones (strong reflections), which are usually 
of particular interest. 

(d) The saddle point approximation (Bricogne, 1984) 
provides a more suitable tool to calculate probabilities 
for the large deviations, but at the cost of the solution of 
a set of non-linear simultaneous equations for every trial 
structure-factor set. 

Additional difficulties appear when calculating the 
likelihood function from the j.p.d, as the marginal 
probability distribution for the magnitudes only. This 
requires the integration of the j.p.d, with respect to thc 
phases, which is a serious problem even in the case of the 
multidimensional Gaussian approximation. 

The proposed approach, based on the generalized 
likelihood functions coupled with Monte-Carlo simula- 
tions, shows a possible way to avoid these difficulties. 

(i) It is simple to introduce additional stcreochemical 
restrictions into the FAM simulation process; e.g. it is 
possible to generate a current atom position depending 
on the positions of previously generated atoms. 

(ii) It is not necessary to have some large parameters 
(e.g. the number of atoms) and look for asymptotic 
formulae. 

(iii) The Gaussian approximation and the problem of 
the likelihood calculation do not appear in this case. 

On the other hand, empirical Monte-Carlo calcula- 
tions have obvious disadvantages. 

(i) The procedure is very time-consuming and, 
therefore, strongly limited by the available computer 
power. 

(ii) There is no theoretical analysis. 
(iii) There are a number of parameters to be deter- 

mined, such as the cut-off level when calculating 
generalized likelihood, etc., and the results may be 
sensitive to them. 

Hence, the generalized likelihood Monte-Carlo based 
approach cannot be considered as replacing theoretical 
studies, but as providing an additional tool. 

These numerically calculated j.p.d.'s can be succes- 
fully applied in phasing. In particular, as shown in §5, 
they are useful to distinguish between clusters, assuming 
that the correct one is more populated. A similar 
behavior was observed by Urzhumtscv & Podjarny 
(1995) when using the molecular-replacement method at 
very low resolution. This automated cluster analysis 
becomes essential when resolution increases, as the 
number of clusters is too large to be individually 
analyzed. Therefore, the combination of the FAM 
method and the detailed analysis of each mask shows the 
way to solve the phase problem at low resolution. 
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